If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+3x+158=-10
We move all terms to the left:
-3x^2+3x+158-(-10)=0
We add all the numbers together, and all the variables
-3x^2+3x+168=0
a = -3; b = 3; c = +168;
Δ = b2-4ac
Δ = 32-4·(-3)·168
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-45}{2*-3}=\frac{-48}{-6} =+8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+45}{2*-3}=\frac{42}{-6} =-7 $
| 8x-5(x+8)=4x-4 | | 4b-5=45 | | 2-x=13+2 | | 5x+20-3x=10x-30 | | √3x+3√3=0 | | 8(y+2)=4(y+2) | | 3u-(-52)=8 | | (3x-2)(5x-4)=(3x-2)^2 | | -3x^2-3x+168=0 | | Y=70x+10 | | 8y-2=11y+19 | | 21x-11=5(4x+3)-4 | | 9x-1=5x-81 | | 4x-(0.2)=2x | | 9x-(2x-13)=35 | | X^2-4x-10=x(x-5) | | 6x+8=14x+8 | | 4z/12=−8 | | -3u/7=6 | | 9u2–729=0 | | 9u^2–729=0 | | -18=3/8v | | 7X+6X-2x=28+5 | | 17x-28=6 | | q^2+9q+18=0 | | 9(2n+1)=7(6n+8)+7 | | 13x-(3x-5)=95 | | -3(-2x+12)=x-11 | | -3x+6-5(x-1)=5x-(2x-4+7) | | 1/4(16x+28)-16=-3/5(40x-20) | | n/45=4/9 | | 17y+19=13 |